专利摘要:
A computer implemented method of cell overlap analysis of a communication network. The method comprises determining (302, 303) coverage area of a first and a second cell of the communication network, wherein determination of the coverage area of a cell is based on user distribution in the respective cell; determining (304) intersecting area as an area where the determined coverage area of the first cell and the determined coverage area of the second cell overlap; and determining (305) a first impact value reflecting impact of the overlap on the first cell as a ratio of the determined intersecting area and the determined coverage area of the first cell.
公开号:FI20196055A1
申请号:FI20196055
申请日:2019-12-04
公开日:2021-05-31
发明作者:Petteri Lundèn;Jukka-Pekka Salmenkaita;Adriana Chis;Mateo Rendon
申请人:Elisa Oyj;
IPC主号:
专利说明:

[0001] [0001] The present application generally relates to analyzing cell overlap in communication networks.BACKGROUND
[0002] [0002] This section illustrates useful background information without admission of any technique described herein representative of the state of the art.
[0003] [0003] Communication networks comprise a plurality of cells serving users of the network. When users of the communication network move in the area of the network, connections of the users are seamlessly handed over between cells of the network.
[0004] [0004] Depending on network structure, cell sizes may vary, and coverage area of neighboring cells may overlap. Due to overlapping coverage area, cells may have certain adverse impact on performance of other cells (e.g. interference). Cells should provide sufficient signal level in the coverage area to ensure quality of service. Moreover, some overlap between neighboring cells is necessary to facilitate reliable handovers, but at the same time adverse impact on performance of other cells due too much overlap is not desired.
[0005] [0005] In order to perform educated decisions on network management operations, there is a need to analyze how cells impact each other. For example, trace data can be used for this purpose. The challenge is that trace data is expensive or difficult to obtain.
[0008] [0008] In an example embodiment, the method further comprises determining a second impact value reflecting impact of the overlap on the second cell as a ratio of the determined intersecting area and the determined coverage area of the second cell.
[0009] [0009] In an example embodiment, the method further comprises outputting the determined impact value(s).
[0010] [0010] In an example embodiment, the method further comprises using the determined impact value(s) for determining value for at least one network parameter in the communication network.
[0011] [0011] In an example embodiment, the method further comprises using the determined impact value(s) for identifying overshooter cells in the communication network.
[0012] [0012] In an example embodiment, the method further comprises using the determined impact value(s) for analyzing and adjusting antenna tilts in the communication network.
[0013] [0013] In an example embodiment, the method further comprises using the determined impact value(s) for detecting and/or reducing overlap between cells in the = communication network.
[0017] [0017] In an example embodiment, the user distribution is determined based on timing advance values obtained from the cells of the communication network.
[0018] [0018] In an example embodiment, the determination of the cell coverage of a cell is further based on cell coordinates, antenna beam width, and antenna bearing of the respective cell. Also antenna patterns may be used.
[0019] [0019] In an example embodiment, the cell overlap analysis is performed for a plurality of pairs of first and second cells.
[0020] [0020] In an example embodiment, the method further comprises periodically repeating the cell overlap analysis.
[0021] [0021] In an example embodiment, the method further comprises omitting user distribution information obtained during periods of time when at least one of the first cell and the second cell is not in use.
[0022] [0022] In an example embodiment, the method further comprises splitting coverage areas of at least one of the first and second cells into a plurality of sub-areas and performing the cell overlap analysis separately for different sub areas. The method may further comprise taking into account non-uniform user distribution by giving weight to a certain sub-area based on number of users and/or amount of traffic in the respective sub-area.
[0023] [0023] In an example embodiment, the method further comprises aggregating, for a given first cell, impact values related to multiple second cells to determine total impact on the first cell.
[0024] [0024] According to a second example aspect of the present invention, there is provided an apparatus comprising a processor and a memory including computer = program code; the memory and the computer program code configured to, with the N processor, cause the apparatus to perform the method of the first aspect or any related 3 embodiment.
[0027] [0027] Different non-binding example aspects and embodiments of the present invention have been illustrated in the foregoing. The embodiments in the foregoing are used merely to explain selected aspects or steps that may be utilized in implementations of the present invention. Some embodiments may be presented only with reference to certain example aspects of the invention. It should be appreciated that corresponding embodiments may apply to other example aspects as well.BRIEF DESCRIPTION OF THE DRAWINGS
[0028] [0028] For a more complete understanding of example embodiments of the present invention, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:
[0029] [0029] Fig. 1 shows an example scenario according to an embodiment;
[0030] [0030] Fig. 2 shows an apparatus according to an embodiment;
[0031] [0031] Fig. 3 shows a flow diagram illustrating example methods according to certain embodiments;
[0032] [0032] Figs. 4A-4C illustrate certain cell overlap examples;
[0033] [0033] Figs. 5A-5B illustrate examples related to uneven user distribution; and
[0034] [0034] Figs. 6A-6B illustrate examples related to multiple overlapping cells.DETAILED DESCRIPTION OF THE DRAWINGS
[0035] [0035] Example embodiments of the present invention and its potential advantages are understood by referring to Figs. 1 through 6B of the drawings. In this document, like reference signs denote like parts or steps.
[0036] [0036] Example embodiments of the invention provide new mechanisms to = analyze cell overlap of communication networks. In this way it is possible to obtain N information on how cells impact each other, and this information can be used for 3 performing network management operations with the aim to continuously improve 2 operation of the network. The network management operations may relate for example + to finding overshooter or interfered cells, adjusting antenna tilts, detecting and/or E reducing overlap between cells, adjusting neighbor relations, and identifying cells 2 suited for energy saving operations.
[0038] [0038] Cells may be analyzed in pairs or multiple cells may be taken into account at the same time. The analysis may be limited to certain geographical area or otherwise limited area, but it is possible to analyze a whole network, too.
[0039] [0039] Fig. 1 shows an example scenario according to an embodiment. The scenario shows a communication network 101 comprising a plurality of cells and base stations and other network devices, and an automation system 111 configured to implement (automatic) cell overlap analysis according to example embodiments.
[0040] [0040] In an embodiment of the invention the scenario of Fig. 1 operates as follows: In phase 11, the automation system 111 obtains data from cells of the network. The data includes e.g. timing advance data that can be used for determining user distribution in the cells. Also other data may be obtained from the cells or from network design systems. The process may be manually or automatically triggered. The process may be triggered, for example, in response to observing a performance problem or degradation in the network or in a particular area or cell. Additionally or alternatively, the process may be periodically repeated. Data is obtained over a predefined period of = time to collect sufficient data for determining cell overlaps. The predefined period of N time may be for example minutes, hours, days, weeks, or months. More specific non- 3 limiting examples comprise 15 minutes, 30 minutes, 1 hour, 2-12 hours, 1-3 days, 1 2 week, 2 weeks, 3 weeks, one month, or some other period of time. so [0041] In phase 12, the automation system 111 uses the obtained data to o analyze cell overlaps in the network. Results of the analysis may be used for 2 determining certain network management operations and for example to determine N value for at least one network parameter in the communication network.
[0042] [0042] In phase 13, any determined network parameter changes or other actions are deployed in the communication network 101.
[0043] [0043] The process may be repeated for example once a day, every other day, every three days, once a week, every two weeks, once a month, or every two months. By periodically repeating the process, network management operations performed on the basis of the cell overlap analysis adapt to changes in the network load, changes in network usage patterns, and/or changes in the network configuration such as adding new cells or removing or reconfiguring existing cells.
[0044] [0044] Some of the cells in the network may be temporarily not in use (e.g. powered off) e.g. for energy saving or maintenance purposes. In this case, the neighboring cells typically cover for the cell that is offline (serving users that would be otherwise served by the offline cell). In such cases, cell overlap analysis based on data collected and aggregated over a period including such power offs may be misleading. In an example embodiment, this situation is addressed by adapting the method to only consider the (timing advance) data collected from those time periods where none of the cells whose overlap is being computed is powered off or otherwise offline. The data collected during a time period, when one of the cells is not in use, is omitted.
[0045] [0045] Itis to be noted that although timing advance data is typically collected from a plurality of cells, analysis of cell overlap can be performed individually for individual cell pairs. Alternatively, multiple cell pairs can be analyzed in parallel. Any network management actions resulting from the analyses may be limited so that multiple simultaneous changes are avoided in the same geographical area. In this way it is easier to keep track on changes made in the network and their effects.
[0046] [0046] Fig. 2 shows an apparatus 20 according to an embodiment. The apparatus 20 is for example a general-purpose computer or server or some other = electronic data processing apparatus. The apparatus 20 can be used for implementing N embodiments of the invention. That is, with suitable configuration the apparatus 20 is 3 suited for operating for example as the automation system 111 of foregoing disclosure.
[0048] [0048] The processor 21 may comprise, e.g., a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a graphics processing unit, or the like. Fig. 2 shows one processor 21, but the apparatus 20 may comprise a plurality of processors.
[0049] [0049] The memory 22 may be for example a non-volatile or a volatile memory, such as a read-only memory (ROM), a programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), a random-access memory (RAM), a flash memory, a data disk, an optical storage, a magnetic storage, a smart card, or the like. The apparatus 20 may comprise a plurality of memories.
[0050] [0050] The communication interface 25 may comprise communication modules that implement data transmission to and from the apparatus 20. The communication modules may comprise, e.g, a wireless or a wired interface module. The wireless interface may comprise such as a WLAN, Bluetooth, infrared (IR), radio frequency identification (RF ID), GSM/GPRS, CDMA, WCDMA, LTE (Long Term Evolution) or 5G radio module. The wired interface may comprise such as Ethernet or universal serial bus (USB), for example. Further the apparatus 20 may comprise a user interface (not shown) for providing interaction with a user of the apparatus. The user interface may comprise a display and a keyboard, for example. The user interaction may be implemented through the communication interface 25, too.
[0051] [0051] A skilled person appreciates that in addition to the elements shown in Fig. 2, the apparatus 20 may comprise other elements, such as displays, as well as additional circuitry such as memory chips, application-specific integrated circuits (ASIC), other processing circuitry for specific purposes and the like. Further, it is noted that only one apparatus is shown in Fig. 2, but the embodiments of the invention may = egually be implemented in a cluster of shown apparatuses. N [0052] Fig. 3 shows a flow diagram illustrating example methods according to 3 certain embodiments. The methods may be implemented in the automation system 111 2 of Fig. 1 and/or in the apparatus 20 of Fig. 2. The methods are implemented in a + computer and do not reguire human interaction unless otherwise expressly stated. It is E to be noted that the methods may however provide output that may be further 2 processed by humans and/or the methods may require user input to start. Different N phases shown in Fig. 3 may be combined with each other and the order of phases may be changed except where otherwise explicitly defined. Furthermore, it is to be noted that performing all phases of the flow charts is not mandatory.
[0053] [0053] The method of Fig. 3 provides cell overlap analysis of cells of a communication network for network optimization purposes, and comprises following phases:
[0054] [0054] Phase 301: Cell data is obtained. The data may comprise for example dynamic usage data obtained from cells and base stations and network topology data obtained from network design systems. The dynamic usage data may comprise for example timing advance data.
[0055] [0055] Phase 302: Coverage area of a first cell of the communication network is determined based on user distribution in the first cell.
[0056] [0056] Phase 303: Coverage area of a second cell of the communication network is determined based on user distribution in the second cell.
[0057] [0057] For example, timing advance data can be used in phases 302 and 303 for approximating users’ distances from the base station of the cell. The timing advance values may be collected as binned histogram, which means that the exact timing advances may not be known, just the number samples falling in certain ranges of values. For example, it could be known that a certain user is between 78 and 156 meters from the base station or that there are certain number of users between the 78- and 156- meter distance from the base station. If there is a need to find number of users within some other range than the range defined by the bin edges, the user distribution between the bin edges can be interpolated. For the purpose of extrapolating, it can be for example assumed that the users are uniformly distributed between the bin edges. In addition to user distribution also network topology data such as cell coordinates, antenna bearings, antenna patterns, and antenna beam widths can be used in = determination of the cell coverage areas.
[0060] [0060] Phase 306: A second impact value is determined. The second impact value reflects impact of the overlap on the second cell and is defined as a ratio of the determined intersecting area and the determined coverage area of the second cell. The second impact value may be alternatively defined as reflecting impact of the first cell on the second cell. It is to be noted that it is not mandatory to determine both the first impact value and the second impact value. Instead, only one of these may suffice.
[0061] [0061] Phase 307: The determined impact value(s) are output so that they can be used for network management operations in order to optimize network. The impact value(s) may be displayed and/or used for one or more of the following: determining value for at least one network parameter in the communication network, identifying overshooter cells, analyzing and adjusting antenna tilts in the communication network, detecting and/or reducing overlap between cells in the communication network, analyzing and adjusting cell neighborhoods in the communication network, and controlling energy saving procedures in the network. In an example embodiment, it is checked if impact values caused by a certain cell or experienced at a certain cell exceed a threshold value. When it is determined that the threshold is exceeded, network management actions are triggered, while impact values below the threshold may be ignored. The impact value that is considered may be an aggregated impact value taking into account interaction between multiple cells.
[0062] [0062] Phase 308: The phases 301-307 or some of them are repeated when necessary and/or periodically.
[0063] [0063] Itis to be noted that anywhere in this document, the term cell coverage does not necessarily refer to 100% coverage area of the cell, but instead to a significant or desired coverage area or area that fulfills predefined criteria. For example, the timing = advance data does not convey information of the bearing of the users, so the coverage N determined using such distance data is going to have some level of uncertainty. This is, 3 however, a reasonable trade-off considering the feasibility of acquiring and analyzing 7 the data.
[0065] [0065] Figs. 4A-4C illustrate certain cell overlap examples. Fig. 4A shows a base station 401 of a first cell and coverage area 403 of the first cell. Likewise, Fig. 4A shows a base station 402 of a second cell and coverage area 404 of the second cell. Coverage areas 403 and 404 of the first and second cell overlap at intersecting area 405. In this example it is likely that the overlap has relatively small impact on both the first and the second cell because it represents only a small portion of either the first cell coverage area 403 or the second cell coverage area 404.
[0066] [0066] In an example embodiment, the coverage area of a cell is approximated by a circular sector pointing in the direction of bearing of antenna of the cell. The origin of the sector is at cell's coordinates (latitude, longitude). Sector's width is based on antenna’s beam width. The length of the sector is determined by the distance to users. In practice, the users that are furthest away from the base station of the cell determine the length of the sector.
[0067] [0067] In an example embodiment, the coverage area 403 of the first cell is denoted 47 and the coverage area 404 of the second cell is denoted 42. These may be computed by approximating the corresponding circular sectors with polygons. The geographical area of the polygon of the intersecting area 405 is denoted I.
[0068] [0068] In another example embodiment, the area of the circular sector may be o approximated by dividing the area ofinterest into a grid of points (e.g. 50 meter spacing > and determining which of the grid points are within each area. The area is then N approximated to be directly proportional to the number of grid points falling inside it.
[0070] [0070] A second impact value 02 reflecting impact of the overlap on the second cell is defined as a ratio of the determined intersecting area and the determined coverage area of the second cell. 02 may be de defined as I x 100 As where the factor 100 is for expressing the result as a percentage.
[0071] [0071] Fig. 4B shows a similar example as Fig. 4A with a base station 411 of a first cell, coverage area 413 of the first cell, a base station 412 of a second cell, and coverage area 414 of the second cell. Coverage areas 403 and 404 of the first and second cell overlap at intersecting area 415. In this example the coverage area 413 of the first cell fully overlaps with the coverage area 414 of the second cell and thereby the first cell has an impact on the second cell over the whole coverage area 414 of the second cell. Coverage area 414 of the second cell on the other hand overlaps only part of the coverage area 413 of the first cell. It is clear that in this example the second impact value 02 is much larger than the first impact value 01. This example illustrates that one cell may have significant impact on another cell, but the vice versa is not necessarily > true. In principle impact of cells on each other could be approximated for example based > on antenna angles and distance between the base stations of the cells but in this N example case such approximation would not give accurate results as the inter-cell x impact is not balanced. Example embodiments of present disclosure, on the other hand, z provide accurate results also in this case. so [0072] Fig. 4C shows an example where certain percentile of users is o considered for determination of the coverage area of the cells. In the shown example 2 scenario, the cell coverage area is split into sub-areas, each sub-area covering certain © percentile of users. Fig. 4C shows a base station 421 of a first cell, a coverage area 425 covering 50% percentile of the first cell, a coverage area 426 covering 50t-90th percentile of the first cell, a base station 423 of a second cell, and coverage area 427 covering 50% percentile of the second cell, and a coverage area 428 covering 50th - 90th percentile of the second cell. It can be seen that the coverage areas 426 and 427 of the first and second cell overlap at intersecting area 431, and the coverage areas 426 and 428 of the first and second cell overlap at intersecting area 432. The coverage area 425 of the first cell does not have any overlap with the second cell.
[0073] [0073] In an example setup, the following impact values can be obtained in the scenario of Fig 4C using the equations discussed in connection with Fig. 4A: - first cell 50 vs. second cell 50: 0.0 - first cell 50 vs. second cell 50-90: 0.0 - first cell 50-90 vs. second cell 50: 14.84 - first cell 50-90 vs. second cell 50-90: 6.88 - second cell 50 vs. first cell 50: 0.0 - second cell 50-90 vs. first cell 50: 0.0 - second cell 50 vs. first cell 50-90: 89.32 - second cell 50-90 vs. first cell 50-90: 73.66.
[0074] [0074] User distribution in cells can be non-uniform with respect to time and distance. Also amount of traffic can be non-uniform as certain users generate more traffic than others. Figs. 5A-5B illustrate examples related to uneven user distribution. Fig. 5A shows coverage area of a base station 501 split into four sub-areas (502-505) each having equal number of users. The sub-areas may be associated with for example 20% (sub-area 505), 40% (sub-area 504), 60t (sub-area 503), and 80 (sub-area 502) percentile of users. It can be seen that for example the sub-area 504 is smaller than the other sub-areas, whereby user-density in that area is higher than in the other areas.
[0076] [0076] Fig. 5B illustrates time varying user distribution. Fig. 5 shows number of users at different distances in one cell at three different moments of time 521, 522 and
[0077] [0077] Time variance can be taken into account by collecting information about user distribution over a time period to obtain average user distribution. The information can be collected for example for one week, two weeks, a month or for some other period of time. In this way individual divergent usage patterns and/or sudden short-term changes do not affect the analysis. It is to be noted that in view of implementation of various embodiments, it is possible to analyze data from a shorter or longer period of time. At minimum information at one moment of time is enough for the analysis.
[0078] [0078] Figs. 6A-6B illustrate examples related to multiple overlapping cells.
[0079] [0079] In an example embodiment, impact values related to multiple second = cells are aggregated for a given first cell to determine total impact on the first cell. The N impact of individual second cells or sub-areas of one or more second cells can be 3 determined using the equations discussed in connection with Fig. 4A. The impact values 2 thus obtained may then be aggregated (e.g. by adding up the individual impact values) so to obtain total impact value for the first cell.
[0081] [0081] In view of the cell A, the cells B and C are second cells possibly causing impact on the cell A. There is overlap with the cell C at intersecting area 605 and overlap with the cell B at intersecting area 607. At the intersecting area 607 both the cell C and the cell B have an impact on the cell A. An aggregated impact value reflecting total impact on the cell A may be calculated by aggregating the impact values caused by the overlap with the cell C and overlap with the cell B.
[0082] [0082] In view of the cell B, the cells A and C are second cells possibly causing impact on the cell B. There is overlap with the cell C at intersecting area 606 and overlap with the cell A at intersecting area 607. At the intersecting area 607 both the cell C and the cell A have an impact on the cell B. An aggregated impact value reflecting total impact on the cell B may be calculated by aggregating the impact values caused by the overlap with the cell C and overlap with the cell A.
[0083] [0083] In view of the cell C, the cells B and A are second cells possibly causing impact on the cell C. There is overlap with the cell A at intersecting area 605 and overlap with the second cell at intersecting area 606. The intersecting areas 605 and 606 overlap at the intersecting area 607, where both the cell A and the cell B have an impact on the cell C. An aggregated impact value reflecting total impact on the cell C may be calculated by aggregating the impact values caused by the overlap with the cell A and overlap with the cell B.
[0084] [0084] Fig. 6B shows an example scenario with three partially overlapping cells. In this example scenario, cell coverage area of at least some cells is further split into sub-areas representing predefined percentiles of users. The shown example scenario comprises a base station 601 of a cell A, a base station 602 of a cell B, and a base station 603 of a cell C. Coverage area of the cell A is split into two sub-areas 621 = and 622. The sub-area 621 may represent for example 50% percentile of users and the N sub-area 622 may represent for example 50*! - 90t! percentile of users. Coverage area 3 631 of the cell B may represent for example 85 percentile of users. Coverage area of z the cell C is split into two sub-areas 641 and 642. The sub-area 641 may represent for + example 40* percentile of users and the sub-area 642 may represent for example 40th — E 80th percentile of users. It is to be noted that percentiles defined herein area given 2 simply as an example and different selection of percentiles of users can be used. For N example, same percentiles may be used in all cells to provide comparable results, but also other choices are possible.
[0085] [0085] In view of the cell A, the cells B and C are second cells possibly causing impact on the cell A. The coverage area 631 of the cell B overlaps and impacts the sub- area 621 of the cell A but not the sub-area 622 of the cell A. The sub-areas 641 and 642 of the cell C partially overlap and thereby impact both the sub-areas 621 and 622 of the cell A.
[0086] [0086] In view of the cell B, the cells A and C are second cells possibly causing impact on the cell A. The sub-area 621 of the cell A fully overlaps and thus impact the coverage area 631 of the cell B. The sub-area 642 of the cell C partially overlaps and thereby impacts the coverage area 631 of the cell B. The sub-area 641 of the cell C and the sub-area 622 of the cell B do not have overlapping area with the cell B.
[0087] [0087] In view of the cell C, the cells B and A are second cells possibly causing impact on the cell A. The coverage area 631 of the cell B partially overlaps and impacts the sub-area 642 of the cell C but not the sub-area 641 of the cell C. The sub-areas 621 and 622 of the cell A partially overlap and thereby impact both the sub-areas 641 and 642 of the cell C.
[0088] [0088] Without in any way limiting the scope, interpretation, or application of the claims appearing below, a technical effect of one or more of the example embodiments disclosed herein is ability to dynamically analyze cell overlaps in an efficient and adaptive manner. The results thus obtained may be used for network management operations and consequently network performance may be improved.
[0089] [0089] Another technical effect of one or more of the example embodiments disclosed herein is ability to analyze cell overlaps based on data that is easily available without more complicated data such as trace data. Thereby the solution is easy to implement and reliable to follow.
[0093] [0093] Although various aspects of the invention are set out in the independent claims, other aspects of the invention comprise other combinations of features from the described embodiments and/or the dependent claims with the features of the independent claims, and not solely the combinations explicitly set out in the claims.
[0094] [0094] It is also noted herein that while the foregoing describes example embodiments of the invention, these descriptions should not be viewed in a limiting sense. Rather, there are several variations and modifications, which may be made without departing from the scope of the present invention as defined in the appended claims.
oOON
N +O
I a aLOLOOOOON
权利要求:
Claims (17)
[1] 1. A computer implemented method of cell overlap analysis for cells of a communication network (101) for the purpose of controlling the communication network, the method comprising determining (302, 303) coverage area of a first and a second cell of the communication network, wherein determination of the coverage area of a cell is based on user distribution in the respective cell; determining (304) intersecting area as an area where the determined coverage area of the first cell and the determined coverage area of the second cell overlap; and determining (305) a first impact value reflecting impact of the overlap on the first cell as a ratio of the determined intersecting area and the determined coverage area of the first cell.
[2] 2. The method of claim 1, further comprising determining (306) a second impact value reflecting impact of the overlap on the second cell as a ratio of the determined intersecting area and the determined coverage area of the second cell.
[3] 3. The method of claim 1 or 2, further comprising outputting the determined impact value(s).
[4] 4. The method of any preceding claim, further comprising using the determined impact value(s) for determining value for at least one network parameter in the communication network.
D
N A
[5] 5. The method of any preceding claim, further comprising using the determined 3 impact value(s) for one or more of the following: identifying overshooter cells in the 2 communication network, analyzing and adjusting antenna tilts in the communication so network, detecting and/or reducing overlap between cells in the communication o network, analyzing and adjusting cell neighborhoods in the communication network, 2 and controlling energy saving procedures in the communication network.
N
[6] 6. The method of any preceding claim, wherein predefined percentile of users is taken into account in determination of the cell coverage of a cell.
[7] 7. The method of claim 6, wherein the predefined percentile of users is different for the first cell and the second cell.
[8] 8. The method of claim 6, wherein the predefined percentile of users is the same for the first cell and the second cell.
[9] 9. The method of any preceding claim, wherein the user distribution is determined based on timing advance values obtained from the cells of the communication network.
[10] 10. The method of any preceding claim, wherein determination of the cell coverage of a cell is further based on cell coordinates, antenna beam width, and antenna bearing of the respective cell.
[11] 11. The method of any preceding claim, wherein the cell overlap analysis is performed for a plurality of pairs of first and second cells.
[12] 12. The method of any preceding claim, further comprising omitting user distribution information obtained during periods of time when at least one of the first cell and the second cell is not in use.
[13] 13. The method of any preceding claim, further comprising splitting coverage areas D of at least one of the first and second cells into a plurality of sub-areas and performing
O N the cell overlap analysis separately for different sub areas.
N 3
[14] 14. The method of claim 13, further comprising taking into account non-uniform E user distribution by giving weight to a certain sub-area based on number of users LO and/or amount of traffic in the respective sub-area.
3 ©
O O
[15] 15. The method of any preceding claim, further comprising aggregating, for a given first cell, impact values related to multiple second cells to determine total impact on the first cell.
[16] 16. An apparatus (20, 111) comprising a processor (21), and a memory (22) including computer program code; the memory and the computer program code configured to, with the processor, cause the apparatus to perform the method of any one of claims 1-15.
[17] 17. A computer program comprising computer executable program code (23) which when executed by a processor causes an apparatus to perform the method of any one of claims 1-15. o
O
N
N 3
O
I a a
LO
LO
O
O
O
O
N
类似技术:
公开号 | 公开日 | 专利标题
CN106708955B|2020-01-14|Thermodynamic diagram generation method and equipment
CN103686745B|2017-02-08|Method and device for optimizing frequency in LTE system
CN105657724B|2017-10-27|Technology for providing small cell deployment planning
CN108260075B|2020-10-02|Addressing method and device for deployment position of base station
CN104039008B|2017-08-25|A kind of hybrid locating method
CN102083076A|2011-06-01|Planning method and device of wireless network
CN106793080A|2017-05-31|It is a kind of based on hotspot can localization method offline
FI129031B|2021-05-31|Cell overlap analysis
Huang et al.2019|Optimized deployment of drone base station to improve user experience in cellular networks
CN103796218A|2014-05-14|Wireless access point site selection method and apparatus
CN105828393B|2020-01-14|Method and device for configuring adjacent cells between systems
CN104349364A|2015-02-11|Method and device for dividing cell cluster
CN110826231A|2020-02-21|Multi-source data integration method for meteorological station
CN104363614B|2017-10-27|A kind of abnormal detection method and device of the coverage direction of cell
CN107113633A|2017-08-29|The treating method and apparatus of optimizing communication network
CN107517465B|2021-05-25|Method and device for screening FDD-LTE base station site
CN111901750A|2020-11-06|Positioning method, positioning device, electronic equipment and storage medium
EP3142404B1|2018-08-15|Information processing method and device
JP2015025814A|2015-02-05|Target control device and target control method
CN110913407A|2020-03-24|Method and device for analyzing overlapping coverage
CN110472788A|2019-11-19|A kind of personal information prediction technique and device
Jacquillat et al.2014|Airport Congestion Mitigation through Dynamic Control of Runway Configurations and of Arrival and Departure Service Rates under Stochastic Operating Conditions
JP5648417B2|2015-01-07|Target management apparatus and target management method
WO2008039630A2|2008-04-03|Efficient deployment of mobile test units to gather location-dependent radio-frequency data
WO2020250366A1|2020-12-17|Station installation assistance design device, station installation assistance design method, and program
同族专利:
公开号 | 公开日
WO2021111032A1|2021-06-10|
FI129031B|2021-05-31|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题

US20110130135A1|2009-12-01|2011-06-02|Hafedh Trigui|Coverage hole detector|
US10098007B2|2016-08-15|2018-10-09|T-Mobile Usa, Inc.|Coverage management for wireless communication network|
CN108668293A|2017-03-27|2018-10-16|中兴通讯股份有限公司|The method and apparatus for calculating serving cell and the Chong Die coverage of adjacent area|
US11197212B2|2017-11-17|2021-12-07|Nokia Technologies Oy|Cell relations optimization|
法律状态:
2021-05-31| FG| Patent granted|Ref document number: 129031 Country of ref document: FI Kind code of ref document: B |
优先权:
申请号 | 申请日 | 专利标题
FI20196055A|FI129031B|2019-12-04|2019-12-04|Cell overlap analysis|FI20196055A| FI129031B|2019-12-04|2019-12-04|Cell overlap analysis|
PCT/FI2020/050788| WO2021111032A1|2019-12-04|2020-11-23|Cell overlap analysis|
[返回顶部]